What Is the Atomic Number of Titanium
Chemical element with atomic number 22
Chemical element, symbol Ti and atomic number 22
Titanium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pronunciation |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Appearance | silvery grey-white metallic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight A r, std(Ti) | 47.867(1) [2] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Titanium in the periodic table | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic number (Z) | 22 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Group | group 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Period | period 4 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Block | d-block | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electron configuration | [Ar] 3d2 4s2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrons per shell | 2, 8, 10, 2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Physical properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Phase atSTP | solid | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Melting point | 1941 K (1668 °C, 3034 °F) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Boiling point | 3560 K (3287 °C, 5949 °F) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Density (nearr.t.) | 4.506 g/cm3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
when liquid (atm.p.) | 4.11 g/cm3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of fusion | 14.15 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Heat of vaporization | 425 kJ/mol | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Molar heat capacity | 25.060 J/(mol·K) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vapor pressure
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Oxidation states | −2, −1, 0,[3] +1, +2 , +3 , +4 [4] (an amphoteric oxide) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electronegativity | Pauling scale: 1.54 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Ionization energies |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Atomic radius | empirical: 147 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Covalent radius | 160±8 pm | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Other properties | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Natural occurrence | primordial | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Crystal structure | hexagonal close-packed (hcp)
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Speed of sound thin rod | 5090 m/s (atr.t.) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal expansion | 8.6 µm/(m⋅K) (at 25 °C) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thermal conductivity | 21.9 W/(m⋅K) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Electrical resistivity | 420 nΩ⋅m (at 20 °C) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Magnetic ordering | paramagnetic | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Molar magnetic susceptibility | +153.0×10−6 cm3/mol (293 K)[5] | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Young's modulus | 116 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Shear modulus | 44 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Bulk modulus | 110 GPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Poisson ratio | 0.32 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mohs hardness | 6.0 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Vickers hardness | 830–3420 MPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Brinell hardness | 716–2770 MPa | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CAS Number | 7440-32-6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
History | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Discovery | William Gregor (1791) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
First isolation | Jöns Jakob Berzelius (1825) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Named by | Martin Heinrich Klaproth (1795) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Main isotopes of titanium | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Category: Titanium
|
Titanium is a chemical element with the symbol Ti and atomic number 22. Its atomic weight is 47.867 measured in daltons. It is a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in sea water, aqua regia, and chlorine.
Titanium was discovered in Cornwall, Great Britain, by William Gregor in 1791 and was named by Martin Heinrich Klaproth after the Titans of Greek mythology. The element occurs within a number of mineral deposits, principally rutile and ilmenite, which are widely distributed in the Earth's crust and lithosphere; it is found in almost all living things, as well as bodies of water, rocks, and soils.[6] The metal is extracted from its principal mineral ores by the Kroll[7] and Hunter processes. The most common compound, titanium dioxide, is a popular photocatalyst and is used in the manufacture of white pigments.[8] Other compounds include titanium tetrachloride (TiCl4), a component of smoke screens and catalysts; and titanium trichloride (TiCl3), which is used as a catalyst in the production of polypropylene.[6]
Titanium can be alloyed with iron, aluminium, vanadium, and molybdenum, among other elements, to produce strong, lightweight alloys for aerospace (jet engines, missiles, and spacecraft), military, industrial processes (chemicals and petrochemicals, desalination plants, pulp, and paper), automotive, agriculture (farming), medical prostheses, orthopedic implants, dental and endodontic instruments and files, dental implants, sporting goods, jewelry, mobile phones, and other applications.[6]
The two most useful properties of the metal are corrosion resistance and strength-to-density ratio, the highest of any metallic element.[9] In its unalloyed condition, titanium is as strong as some steels, but less dense.[10] There are two allotropic forms[11] and five naturally occurring isotopes of this element, 46Ti through 50Ti, with 48Ti being the most abundant (73.8%).[12] Although titanium and zirconium have the same number of valence electrons and are in the same group in the periodic table, they differ in many chemical and physical properties.
Characteristics
Physical properties
As a metal, titanium is recognized for its high strength-to-weight ratio.[11] It is a strong metal with low density that is quite ductile (especially in an oxygen-free environment),[6] lustrous, and metallic-white in color.[13] The relatively high melting point (more than 1,650 °C or 3,000 °F) makes it useful as a refractory metal. It is paramagnetic and has fairly low electrical and thermal conductivity compared to other metals.[6] Titanium is superconducting when cooled below its critical temperature of 0.49 K.[14] [15]
Commercially pure (99.2% pure) grades of titanium have ultimate tensile strength of about 434 MPa (63,000 psi), equal to that of common, low-grade steel alloys, but are less dense. Titanium is 60% denser than aluminium, but more than twice as strong[10] as the most commonly used 6061-T6 aluminium alloy. Certain titanium alloys (e.g., Beta C) achieve tensile strengths of over 1,400 MPa (200,000 psi).[16] However, titanium loses strength when heated above 430 °C (806 °F).[17]
Titanium is not as hard as some grades of heat-treated steel; it is non-magnetic and a poor conductor of heat and electricity. Machining requires precautions, because the material can gall unless sharp tools and proper cooling methods are used. Like steel structures, those made from titanium have a fatigue limit that guarantees longevity in some applications.[13]
The metal is a dimorphic allotrope of an hexagonal α form that changes into a body-centered cubic (lattice) β form at 882 °C (1,620 °F).[17] The specific heat of the α form increases dramatically as it is heated to this transition temperature but then falls and remains fairly constant for the β form regardless of temperature.[17]
Chemical properties
The Pourbaix diagram for titanium in pure water, perchloric acid, or sodium hydroxide[18]
Like aluminium and magnesium, the surface of titanium metal and its alloys oxidize immediately upon exposure to air to form a thin non-porous passivation layer that protects the bulk metal from further oxidation or corrosion.[6] When it first forms, this protective layer is only 1–2 nm thick but it continues to grow slowly, reaching a thickness of 25 nm in four years.[19] This layer gives titanium excellent resistance to corrosion, almost equivalent to platinum.
Titanium is capable of withstanding attack by dilute sulfuric and hydrochloric acids, chloride solutions, and most organic acids.[7] However, titanium is corroded by concentrated acids.[20] As indicated by its negative redox potential, titanium is thermodynamically a very reactive metal that burns in normal atmosphere at lower temperatures than the melting point. Melting is possible only in an inert atmosphere or in a vacuum. At 550 °C (1,022 °F), it combines with chlorine.[7] It also reacts with the other halogens and absorbs hydrogen.[8]
Titanium readily reacts with oxygen at 1,200 °C (2,190 °F) in air, and at 610 °C (1,130 °F) in pure oxygen, forming titanium dioxide.[11] Titanium is one of the few elements that burns in pure nitrogen gas, reacting at 800 °C (1,470 °F) to form titanium nitride, which causes embrittlement.[21] Because of its high reactivity with oxygen, nitrogen, and many other gases, titanium that is evaporated from filaments is the basis for titanium sublimation pumps, in which titanium serves as a scavenger for these gases by chemically binding to them. Such pumps inexpensively produce extremely low pressures in ultra-high vacuum systems.
Occurrence
Titanium is the ninth-most abundant element in Earth's crust (0.63% by mass)[22] and the seventh-most abundant metal. It is present as oxides in most igneous rocks, in sediments derived from them, in living things, and natural bodies of water.[6] [7] Of the 801 types of igneous rocks analyzed by the United States Geological Survey, 784 contained titanium. Its proportion in soils is approximately 0.5 to 1.5%.[22]
Common titanium-containing minerals are anatase, brookite, ilmenite, perovskite, rutile, and titanite (sphene).[19] Akaogiite is an extremely rare mineral consisting of titanium dioxide. Of these minerals, only rutile and ilmenite have economic importance, yet even they are difficult to find in high concentrations. About 6.0 and 0.7 million tonnes of those minerals were mined in 2011, respectively.[23] Significant titanium-bearing ilmenite deposits exist in western Australia, Canada, China, India, Mozambique, New Zealand, Norway, Sierra Leone, South Africa, and Ukraine.[19] About 186,000 tonnes of titanium metal sponge were produced in 2011, mostly in China (60,000 t), Japan (56,000 t), Russia (40,000 t), United States (32,000 t) and Kazakhstan (20,700 t). Total reserves of titanium are estimated to exceed 600 million tonnes.[23]
Country | thousand tonnes | % of total |
---|---|---|
Australia | 1,300 | 19.4 |
South Africa | 1,160 | 17.3 |
Canada | 700 | 10.4 |
India | 574 | 8.6 |
Mozambique | 516 | 7.7 |
China | 500 | 7.5 |
Vietnam | 490 | 7.3 |
Ukraine | 357 | 5.3 |
World | 6,700 | 100 |
The concentration of titanium is about 4 picomolar in the ocean. At 100 °C, the concentration of titanium in water is estimated to be less than 10−7 M at pH 7. The identity of titanium species in aqueous solution remains unknown because of its low solubility and the lack of sensitive spectroscopic methods, although only the 4+ oxidation state is stable in air. No evidence exists for a biological role, although rare organisms are known to accumulate high concentrations of titanium.[24]
Titanium is contained in meteorites, and it has been detected in the Sun and in M-type stars[7] (the coolest type) with a surface temperature of 3,200 °C (5,790 °F).[25] Rocks brought back from the Moon during the Apollo 17 mission are composed of 12.1% TiO2.[7] Native titanium (pure metallic) is very rare.[26]
Isotopes
Naturally occurring titanium is composed of five stable isotopes: 46Ti, 47Ti, 48Ti, 49Ti, and 50Ti, with 48Ti being the most abundant (73.8% natural abundance). At least 21 radioisotopes have been characterized, the most stable of which are 44Ti with a half-life of 63 years; 45Ti, 184.8 minutes; 51Ti, 5.76 minutes; and 52Ti, 1.7 minutes. All other radioactive isotopes have half-lives less than 33 seconds, with the majority less than half a second.[12]
The isotopes of titanium range in atomic weight from 39.002 u (39Ti) to 63.999 u (64Ti).[27] The primary decay mode for isotopes lighter than 46Ti is positron emission (with the exception of 44Ti which undergoes electron capture), leading to isotopes of scandium, and the primary mode for isotopes heavier than 50Ti is beta emission, leading to isotopes of vanadium.[12]
Titanium becomes radioactive upon bombardment with deuterons, emitting mainly positrons and hard gamma rays.[7]
Compounds
The +4 oxidation state dominates titanium chemistry,[28] but compounds in the +3 oxidation state are also common.[29] Commonly, titanium adopts an octahedral coordination geometry in its complexes,[30] [31] but tetrahedral TiCl4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of covalent bonding.[28]
Oxides, sulfides, and alkoxides
The most important oxide is TiO2, which exists in three important polymorphs; anatase, brookite, and rutile. All of these are white diamagnetic solids, although mineral samples can appear dark (see rutile). They adopt polymeric structures in which Ti is surrounded by six oxide ligands that link to other Ti centers.[32]
The term titanates usually refers to titanium(IV) compounds, as represented by barium titanate (BaTiO3). With a perovskite structure, this material exhibits piezoelectric properties and is used as a transducer in the interconversion of sound and electricity.[11] Many minerals are titanates, e.g. ilmenite (FeTiO3). Star sapphires and rubies get their asterism (star-forming shine) from the presence of titanium dioxide impurities.[19]
A variety of reduced oxides (suboxides) of titanium are known, mainly reduced stoichiometries of titanium dioxide obtained by atmospheric plasma spraying. Ti3O5, described as a Ti(IV)-Ti(III) species, is a purple semiconductor produced by reduction of TiO2 with hydrogen at high temperatures,[33] and is used industrially when surfaces need to be vapour-coated with titanium dioxide: it evaporates as pure TiO, whereas TiO2 evaporates as a mixture of oxides and deposits coatings with variable refractive index.[34] Also known is Ti2O3, with the corundum structure, and TiO, with the rock salt structure, although often nonstoichiometric.[35]
The alkoxides of titanium(IV), prepared by reacting TiCl4 with alcohols, are colourless compounds that convert to the dioxide on reaction with water. They are industrially useful for depositing solid TiO2 via the sol-gel process. Titanium isopropoxide is used in the synthesis of chiral organic compounds via the Sharpless epoxidation.[ citation needed ]
Titanium forms a variety of sulfides, but only TiS2 has attracted significant interest. It adopts a layered structure and was used as a cathode in the development of lithium batteries. Because Ti(IV) is a "hard cation", the sulfides of titanium are unstable and tend to hydrolyze to the oxide with release of hydrogen sulfide.[ citation needed ]
Nitrides and carbides
Titanium nitride (TiN) is a member of a family of refractory transition metal nitrides and exhibits properties similar to both covalent compounds including thermodynamic stability, extreme hardness, thermal/electrical conductivity, and a high melting point.[36] TiN has a hardness equivalent to sapphire and carborundum (9.0 on the Mohs Scale),[37] and is often used to coat cutting tools, such as drill bits.[38] It is also used as a gold-colored decorative finish and as a barrier metal in semiconductor fabrication.[39] Titanium carbide, which is also very hard, is found in cutting tools and coatings.[40]
Titanium(III) compounds are characteristically violet, illustrated by this aqueous solution of titanium trichloride.
Halides
Titanium tetrachloride (titanium(IV) chloride, TiCl4 [41]) is a colorless volatile liquid (commercial samples are yellowish) that, in air, hydrolyzes with spectacular emission of white clouds. Via the Kroll process, TiCl4 is used in the conversion of titanium ores to titanium metal. Titanium tetrachloride is also used to make titanium dioxide, e.g., for use in white paint.[42] It is widely used in organic chemistry as a Lewis acid, for example in the Mukaiyama aldol condensation.[43] In the van Arkel–de Boer process, titanium tetraiodide (TiI4) is generated in the production of high purity titanium metal.[44]
Titanium(III) and titanium(II) also form stable chlorides. A notable example is titanium(III) chloride (TiCl3), which is used as a catalyst for production of polyolefins (see Ziegler–Natta catalyst) and a reducing agent in organic chemistry.[ citation needed ]
Organometallic complexes
Owing to the important role of titanium compounds as polymerization catalyst, compounds with Ti-C bonds have been intensively studied. The most common organotitanium complex is titanocene dichloride ((C5H5)2TiCl2). Related compounds include Tebbe's reagent and Petasis reagent. Titanium forms carbonyl complexes, e.g. (C5H5)2Ti(CO)2.[45]
Anticancer therapy studies
Following the success of platinum-based chemotherapy, titanium(IV) complexes were among the first non-platinum compounds to be tested for cancer treatment. The advantage of titanium compounds lies in their high efficacy and low toxicity in vivo.[46] In biological environments, hydrolysis leads to the safe and inert titanium dioxide. Despite these advantages the first candidate compounds failed clinical trials due to insufficient efficacy to toxicity ratios and formulation complications.[46] Further development resulted in the creation of potentially effective, selective, and stable titanium-based drugs.[46]
History
Titanium was discovered in 1791 by the clergyman and amateur geologist William Gregor as an inclusion of a mineral in Cornwall, Great Britain.[47] Gregor recognized the presence of a new element in ilmenite[8] when he found black sand by a stream and noticed the sand was attracted by a magnet.[47] Analyzing the sand, he determined the presence of two metal oxides: iron oxide (explaining the attraction to the magnet) and 45.25% of a white metallic oxide he could not identify.[22] Realizing that the unidentified oxide contained a metal that did not match any known element, Gregor reported his findings to the Royal Geological Society of Cornwall and in the German science journal Crell's Annalen.[47] [48] [49]
Around the same time, Franz-Joseph Müller von Reichenstein produced a similar substance, but could not identify it.[8] The oxide was independently rediscovered in 1795 by Prussian chemist Martin Heinrich Klaproth in rutile from Boinik (the German name of Bajmócska), a village in Hungary (now Bojničky in Slovakia).[47] [50] Klaproth found that it contained a new element and named it for the Titans of Greek mythology.[25] After hearing about Gregor's earlier discovery, he obtained a sample of manaccanite and confirmed that it contained titanium.[ citation needed ]
The currently known processes for extracting titanium from its various ores are laborious and costly; it is not possible to reduce the ore by heating with carbon (as in iron smelting) because titanium combines with the carbon to produce titanium carbide.[47] Pure metallic titanium (99.9%) was first prepared in 1910 by Matthew A. Hunter at Rensselaer Polytechnic Institute by heating TiCl4 with sodium at 700–800 °C under great pressure[51] in a batch process known as the Hunter process.[7] Titanium metal was not used outside the laboratory until 1932 when William Justin Kroll produced it by reducing titanium tetrachloride (TiCl4) with calcium.[52] Eight years later he refined this process with magnesium and with sodium in what became known as the Kroll process.[52] Although research continues to seek cheaper and more efficient processes (e.g. FFC Cambridge, Armstrong), the Kroll process is still used for commercial production.[7] [8]
Titanium of very high purity was made in small quantities when Anton Eduard van Arkel and Jan Hendrik de Boer discovered the iodide process in 1925, by reacting with iodine and decomposing the formed vapours over a hot filament to pure metal.[53]
In the 1950s and 1960s, the Soviet Union pioneered the use of titanium in military and submarine applications[51] (Alfa class and Mike class)[54] as part of programs related to the Cold War.[55] Starting in the early 1950s, titanium came into use extensively in military aviation, particularly in high-performance jets, starting with aircraft such as the F-100 Super Sabre and Lockheed A-12 and SR-71.[ citation needed ]
Throughout the Cold War period, titanium was considered a strategic material by the U.S. government, and a large stockpile of titanium sponge (a porous form of the pure metal) was maintained by the Defense National Stockpile Center, until the stockpile was dispersed in the 2000s.[56] In 2006, Russian-based VSMPO-AVISMA was the world's largest producer, accounting for about 29% of the world market.[57] As of 2015, the seven countries that produced titanium sponge were, in order of output, China, Japan, Russia, Kazakhstan, the U.S., Ukraine, and India.[58] [59]
Production
Titanium (mineral concentrate)
Basic titanium products: plate, tube, rods, and powder
The processing of titanium metal occurs in four major steps:[60] reduction of titanium ore into "sponge", a porous form; melting of sponge, or sponge plus a master alloy to form an ingot; primary fabrication, where an ingot is converted into general mill products such as billet, bar, plate, sheet, strip, and tube; and secondary fabrication of finished shapes from mill products.[ citation needed ]
Because it cannot be readily produced by reduction of titanium dioxide,[13] titanium metal is obtained by reduction of TiCl4 with magnesium metal in the Kroll process. The complexity of this batch production in the Kroll process explains the relatively high market value of titanium,[61] despite the Kroll process being less expensive than the Hunter process.[51] To produce the TiCl4 required by the Kroll process, the dioxide is subjected to carbothermic reduction in the presence of chlorine. In this process, the chlorine gas is passed over a red-hot mixture of rutile or ilmenite in the presence of carbon. After extensive purification by fractional distillation, the TiCl4 is reduced with 800 °C (1,470 °F) molten magnesium in an argon atmosphere.[11] Titanium metal can be further purified by the van Arkel–de Boer process, which involves thermal decomposition of titanium tetraiodide.
- 2 FeTiO3 + 7 Cl2 + 6 C → 2 TiCl4 + 2 FeCl3 + 6 CO (900 °C)
- TiCl4 + 2 Mg → 2 MgCl2 + Ti (1,100 °C)
A more recently developed batch production method, the FFC Cambridge process,[62] reduces titanium dioxide electrochemically in molten calcium chloride to produce titanium metal as either powder or sponge.[63] If mixed oxide powders are used, the product is an alloy.[ citation needed ]
Common titanium alloys are made by reduction. For example, cuprotitanium (rutile with copper added is reduced), ferrocarbon titanium (ilmenite reduced with coke in an electric furnace), and manganotitanium (rutile with manganese or manganese oxides) are reduced.[64]
About fifty grades of titanium alloys are designed and currently used, although only a couple of dozen are readily available commercially.[65] The ASTM International recognizes 31 grades of titanium metal and alloys, of which grades one through four are commercially pure (unalloyed). Those four vary in tensile strength as a function of oxygen content, with grade 1 being the most ductile (lowest tensile strength with an oxygen content of 0.18%), and grade 4 the least ductile (highest tensile strength with an oxygen content of 0.40%).[19] The remaining grades are alloys, each designed for specific properties of ductility, strength, hardness, electrical resistivity, creep resistance, specific corrosion resistance, and combinations thereof.[66]
In addition to the ASTM specifications, titanium alloys are also produced to meet aerospace and military specifications (SAE-AMS, MIL-T), ISO standards, and country-specific specifications, as well as proprietary end-user specifications for aerospace, military, medical, and industrial applications.[67]
Titanium powder is manufactured using a flow production process known as the Armstrong process[68] that is similar to the batch production Hunter process. A stream of titanium tetrachloride gas is added to a stream of molten sodium; the products (sodium chloride salt and titanium particles) is filtered from the extra sodium. Titanium is then separated from the salt by water washing. Both sodium and chlorine are recycled to produce and process more titanium tetrachloride.[69]
Fabrication
All welding of titanium must be done in an inert atmosphere of argon or helium to shield it from contamination with atmospheric gases (oxygen, nitrogen, and hydrogen).[17] Contamination causes a variety of conditions, such as embrittlement, which reduce the integrity of the assembly welds and lead to joint failure.[ citation needed ]
Titanium cannot be soldered without first pre-plating it in a metal that is solderable.[70] The metal can be machined with the same equipment and the same processes as stainless steel.[17]
Forming and forging
Commercially pure flat product (sheet, plate) can be formed readily, but processing must take into account of the tendency of the metal to springback. This is especially true of certain high-strength alloys.[71] [72] Exposure to the oxygen in air at the elevated temperatures used in forging results in formation of an brittle oxygen-rich metallic surface layer called "alpha case" that worsens the fatigue properties, so it must be removed by milling, etching, or electrochemical treatment.[73]
Applications
A titanium cylinder of "grade 2" quality
Titanium is used in steel as an alloying element (ferro-titanium) to reduce grain size and as a deoxidizer, and in stainless steel to reduce carbon content.[6] Titanium is often alloyed with aluminium (to refine grain size), vanadium, copper (to harden), iron, manganese, molybdenum, and other metals.[74] Titanium mill products (sheet, plate, bar, wire, forgings, castings) find application in industrial, aerospace, recreational, and emerging markets. Powdered titanium is used in pyrotechnics as a source of bright-burning particles.[ citation needed ]
Pigments, additives, and coatings
About 95% of all titanium ore is destined for refinement into titanium dioxide (TiO
2 ), an intensely white permanent pigment used in paints, paper, toothpaste, and plastics.[23] It is also used in cement, in gemstones, as an optical opacifier in paper,[75] and a strengthening agent in graphite composite fishing rods and golf clubs.[76]
TiO
2 pigment is chemically inert, resists fading in sunlight, and is very opaque: it imparts a pure and brilliant white colour to the brown or grey chemicals that form the majority of household plastics.[8] In nature, this compound is found in the minerals anatase, brookite, and rutile.[6] Paint made with titanium dioxide does well in severe temperatures and marine environments.[8] Pure titanium dioxide has a very high index of refraction and an optical dispersion higher than diamond.[7] In addition to being a very important pigment, titanium dioxide is also used in sunscreens.[13]
Aerospace and marine
Because titanium alloys have high tensile strength to density ratio,[11] high corrosion resistance,[7] fatigue resistance, high crack resistance,[77] and ability to withstand moderately high temperatures without creeping, they are used in aircraft, armour plating, naval ships, spacecraft, and missiles.[7] [8] For these applications, titanium is alloyed with aluminium, zirconium, nickel,[78] vanadium, and other elements to manufacture a variety of components including critical structural parts, fire walls, landing gear, exhaust ducts (helicopters), and hydraulic systems. In fact, about two thirds of all titanium metal produced is used in aircraft engines and frames.[79] The titanium 6AL-4V alloy accounts for almost 50% of all alloys used in aircraft applications.[80]
The Lockheed A-12 and its development the SR-71 "Blackbird" were two of the first aircraft frames where titanium was used, paving the way for much wider use in modern military and commercial aircraft. An estimated 59 metric tons (130,000 pounds) are used in the Boeing 777, 45 in the Boeing 747, 18 in the Boeing 737, 32 in the Airbus A340, 18 in the Airbus A330, and 12 in the Airbus A320. The Airbus A380 may use 77 metric tons, including about 11 tons in the engines.[81] In aero engine applications, titanium is used for rotors, compressor blades, hydraulic system components, and nacelles. An early use in jet engines was for the Orenda Iroquois in the 1950s.[82] : 412
Because titanium is resistant to corrosion by sea water, it is used to make propeller shafts, rigging, and heat exchangers in desalination plants;[7] heater-chillers for salt water aquariums, fishing line and leader, and divers' knives. Titanium is used in the housings and components of ocean-deployed surveillance and monitoring devices for science and the military. The former Soviet Union developed techniques for making submarines with hulls of titanium alloys[83] forging titanium in huge vacuum tubes.[78]
Titanium is used in the walls of the Juno spacecraft's vault to shield on-board electronics.[84]
Industrial
Welded titanium pipe and process equipment (heat exchangers, tanks, process vessels, valves) are used in the chemical and petrochemical industries primarily for corrosion resistance. Specific alloys are used in oil and gas downhole applications and nickel hydrometallurgy for their high strength (e. g.: titanium beta C alloy), corrosion resistance, or both. The pulp and paper industry uses titanium in process equipment exposed to corrosive media, such as sodium hypochlorite or wet chlorine gas (in the bleachery).[85] Other applications include ultrasonic welding, wave soldering,[86] and sputtering targets.[87]
Titanium tetrachloride (TiCl4), a colorless liquid, is important as an intermediate in the process of making TiO2 and is also used to produce the Ziegler–Natta catalyst. Titanium tetrachloride is also used to iridize glass and, because it fumes strongly in moist air, it is used to make smoke screens.[13]
Consumer and architectural
Titanium metal is used in automotive applications, particularly in automobile and motorcycle racing where low weight and high strength and rigidity are critical.[88] The metal is generally too expensive for the general consumer market, though some late model Corvettes have been manufactured with titanium exhausts,[89] and a Corvette Z06's LT4 supercharged engine uses lightweight, solid titanium intake valves for greater strength and resistance to heat.[90]
Titanium is used in many sporting goods: tennis rackets, golf clubs, lacrosse stick shafts; cricket, hockey, lacrosse, and football helmet grills, and bicycle frames and components. Although not a mainstream material for bicycle production, titanium bikes have been used by racing teams and adventure cyclists.[91]
Titanium alloys are used in spectacle frames that are rather expensive but highly durable, long lasting, light weight, and cause no skin allergies. Many backpackers use titanium equipment, including cookware, eating utensils, lanterns, and tent stakes. Though slightly more expensive than traditional steel or aluminium alternatives, titanium products can be significantly lighter without compromising strength. Titanium horseshoes are preferred to steel by farriers because they are lighter and more durable.[92]
Titanium has occasionally been used in architecture. The 42.5 m (139 ft) Monument to Yuri Gagarin, the first man to travel in space ( 55°42′29.7″N 37°34′57.2″E / 55.708250°N 37.582556°E / 55.708250; 37.582556 ), as well as the 110 m (360 ft) Monument to the Conquerors of Space on top of the Cosmonaut Museum in Moscow are made of titanium for the metal's attractive colour and association with rocketry.[93] [94] The Guggenheim Museum Bilbao and the Cerritos Millennium Library were the first buildings in Europe and North America, respectively, to be sheathed in titanium panels.[79] Titanium sheathing was used in the Frederic C. Hamilton Building in Denver, Colorado.[95]
Because of titanium's superior strength and light weight relative to other metals (steel, stainless steel, and aluminium), and because of recent advances in metalworking techniques, its use has become more widespread in the manufacture of firearms. Primary uses include pistol frames and revolver cylinders. For the same reasons, it is used in the body of laptop computers (for example, in Apple's PowerBook line).[96]
Some upmarket lightweight and corrosion-resistant tools, such as shovels and flashlights, are made of titanium or titanium alloys.[ citation needed ]
Jewelry
Relation between voltage and color for anodized titanium. (Cateb, 2010).
Because of its durability, titanium has become more popular for designer jewelry (particularly, titanium rings).[92] Its inertness makes it a good choice for those with allergies or those who will be wearing the jewelry in environments such as swimming pools. Titanium is also alloyed with gold to produce an alloy that can be marketed as 24-karat gold because the 1% of alloyed Ti is insufficient to require a lesser mark. The resulting alloy is roughly the hardness of 14-karat gold and is more durable than pure 24-karat gold.[97]
Titanium's durability, light weight, and dent and corrosion resistance make it useful for watch cases.[92] Some artists work with titanium to produce sculptures, decorative objects and furniture.[98]
Titanium may be anodized to vary the thickness of the surface oxide layer, causing optical interference fringes and a variety of bright colors.[99] With this coloration and chemical inertness, titanium is a popular metal for body piercing.[100]
Titanium has a minor use in dedicated non-circulating coins and medals. In 1999, Gibraltar released the world's first titanium coin for the millennium celebration.[101] The Gold Coast Titans, an Australian rugby league team, award a medal of pure titanium to their player of the year.[102]
Medical
Because titanium is biocompatible (non-toxic and not rejected by the body), it has many medical uses, including surgical implements and implants, such as hip balls and sockets (joint replacement) and dental implants that can stay in place for up to 20 years.[47] The titanium is often alloyed with about 4% aluminium or 6% Al and 4% vanadium.[103]
Medical screws and plate used to repair wrist fractures. Scale is in centimeters.
Titanium has the inherent ability to osseointegrate, enabling use in dental implants that can last for over 30 years. This property is also useful for orthopedic implant applications.[47] These benefit from titanium's lower modulus of elasticity (Young's modulus) to more closely match that of the bone that such devices are intended to repair. As a result, skeletal loads are more evenly shared between bone and implant, leading to a lower incidence of bone degradation due to stress shielding and periprosthetic bone fractures, which occur at the boundaries of orthopedic implants. However, titanium alloys' stiffness is still more than twice that of bone, so adjacent bone bears a greatly reduced load and may deteriorate.[104] [105]
Because titanium is non-ferromagnetic, patients with titanium implants can be safely examined with magnetic resonance imaging (convenient for long-term implants). Preparing titanium for implantation in the body involves subjecting it to a high-temperature plasma arc which removes the surface atoms, exposing fresh titanium that is instantly oxidized.[47]
Modern advancements in additive manufacturing techniques have increased potential for titanium use in orthopedic implant applications.[106] Complex implant scaffold designs can be 3D-printed using titanium alloys, which allows for more patient-specific applications and increased implant osseointegration.[107]"
Titanium is used for the surgical instruments used in image-guided surgery, as well as wheelchairs, crutches, and any other products where high strength and low weight are desirable.[ citation needed ]
Titanium dioxide nanoparticles are widely used in electronics and the delivery of pharmaceuticals and cosmetics.[108]
Nuclear waste storage
Because of its corrosion resistance, containers made of titanium have been studied for the long-term storage of nuclear waste. Containers lasting more than 100,000 years are thought possible with manufacturing conditions that minimize material defects.[109] A titanium "drip shield" could also be installed over containers of other types to enhance their longevity.[110]
Precautions
Titanium is non-toxic even in large doses and does not play any natural role inside the human body.[25] An estimated quantity of 0.8 milligrams of titanium is ingested by humans each day, but most passes through without being absorbed in the tissues.[25] It does, however, sometimes bio-accumulate in tissues that contain silica. One study indicates a possible connection between titanium and yellow nail syndrome.[111]
As a powder or in the form of metal shavings, titanium metal poses a significant fire hazard and, when heated in air, an explosion hazard.[112] Water and carbon dioxide are ineffective for extinguishing a titanium fire; Class D dry powder agents must be used instead.[8]
When used in the production or handling of chlorine, titanium should not be exposed to dry chlorine gas because it may result in a titanium–chlorine fire.[113]
Titanium can catch fire when a fresh, non-oxidized surface comes in contact with liquid oxygen.[114]
Function in plants
Nettles contain up to 80 parts per million of titanium.[25]
An unknown mechanism in plants may use titanium to stimulate the production of carbohydrates and encourage growth. This may explain why most plants contain about 1 part per million (ppm) of titanium, food plants have about 2 ppm, and horsetail and nettle contain up to 80 ppm.[25]
See also
- List of countries by titanium production
- Suboxide
- Titanium alloy
- Titanium coating
- Titanium in Africa
- Titanium in zircon geothermometry
- Titanium Man
- Titanium Metals Corporation
- Titanium ring
- Titanium sublimation pump
- VSMPO-AVISMA
References
- ^ "titanium". Oxford Dictionaries UK English Dictionary. Oxford University Press. n.d. Retrieved 28 March 2017.
- ^ "Standard Atomic Weights: Titanium". CIAAW. 1993.
- ^ Jilek, Robert E.; Tripepi, Giovanna; Urnezius, Eugenijus; Brennessel, William W.; Young, Victor G., Jr.; Ellis, John E. (2007). "Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)6: [Ti(CO)4(S2CNR2)]−". Chem. Commun. (25): 2639–2641. doi:10.1039/B700808B. PMID 17579764.
- ^ Andersson, N.; et al. (2003). "Emission spectra of TiH and TiD near 938 nm" (PDF). J. Chem. Phys. 118 (8): 10543. Bibcode:2003JChPh.118.3543A. doi:10.1063/1.1539848.
- ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN0-8493-0464-4.
- ^ a b c d e f g h i "Titanium". Encyclopædia Britannica. 2006. Retrieved 29 December 2006.
- ^ a b c d e f g h i j k l m Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN0-8493-0486-5.
- ^ a b c d e f g h i Krebs, Robert E. (2006). The History and Use of Our Earth's Chemical Elements: A Reference Guide (2nd ed.). Westport, CT: Greenwood Press. ISBN978-0-313-33438-2.
- ^ Donachie 1988, p. 11
- ^ a b Barksdale 1968, p. 738
- ^ a b c d e f "Titanium". Columbia Encyclopedia (6th ed.). New York: Columbia University Press. 2000–2006. ISBN978-0-7876-5015-5.
- ^ a b c Barbalace, Kenneth L. (2006). "Periodic Table of Elements: Ti – Titanium". Retrieved 26 December 2006.
- ^ a b c d e Stwertka, Albert (1998). "Titanium". Guide to the Elements (Revised ed.). Oxford University Press. pp. 81–82. ISBN978-0-19-508083-4.
- ^ Steele, M. C.; Hein, R. A. (1953). "Superconductivity of Titanium". Phys. Rev. 92 (2): 243–247. Bibcode:1953PhRv...92..243S. doi:10.1103/PhysRev.92.243.
- ^ Thiemann, M.; et al. (2018). "Complete electrodynamics of a BCS superconductor with μeV energy scales: Microwave spectroscopy on titanium at mK temperatures". Phys. Rev. B. 97 (21): 214516. arXiv:1803.02736. Bibcode:2018PhRvB..97u4516T. doi:10.1103/PhysRevB.97.214516. S2CID 54891002.
- ^ Donachie 1988, Appendix J, Table J.2
- ^ a b c d e Barksdale 1968, p. 734
- ^ Puigdomenech, Ignasi (2004) Hydra/Medusa Chemical Equilibrium Database and Plotting Software, KTH Royal Institute of Technology.
- ^ a b c d e Emsley 2001, p. 453
- ^ Casillas, N.; Charlebois, S.; Smyrl, W. H.; White, H. S. (1994). "Pitting Corrosion of Titanium". J. Electrochem. Soc. 141 (3): 636–642. Bibcode:1994JElS..141..636C. doi:10.1149/1.2054783.
- ^ Forrest, A. L. (1981). "Effects of Metal Chemistry on Behavior of Titanium in Industrial Applications". Industrial Applications of Titanium and Zirconium. p. 112.
- ^ a b c Barksdale 1968, p. 732
- ^ a b c d United States Geological Survey. "USGS Minerals Information: Titanium".
- ^ Buettner, K. M.; Valentine, A. M. (2012). "Bioinorganic Chemistry of Titanium". Chemical Reviews. 112 (3): 1863–81. doi:10.1021/cr1002886. PMID 22074443.
- ^ a b c d e f Emsley 2001, p. 451
- ^ Titanium. Mindat
- ^ Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
- ^ a b Greenwood & Earnshaw 1997, p. 958
- ^ Greenwood & Earnshaw 1997, p. 970
- ^ Greenwood & Earnshaw 1997, p. 960
- ^ Greenwood & Earnshaw 1997, p. 967
- ^ Greenwood & Earnshaw 1997, p. 961
- ^ Liu, Gang; Huang, Wan-Xia; Yi, Yong (26 June 2013). "Preparation and Optical Storage Properties of λTi3O5 Powder". Journal of Inorganic Materials (in Chinese). 28 (4): 425–430. doi:10.3724/SP.J.1077.2013.12309.
- ^ Bonardi, Antonio; Pühlhofer, Gerd; Hermanutz, Stephan; Santangelo, Andrea (2014). "A new solution for mirror coating in $γ$-ray Cherenkov Astronomy". Experimental Astronomy. 38 (1–2): 1–9. arXiv:1406.0622. Bibcode:2014ExA....38....1B. doi:10.1007/s10686-014-9398-x. S2CID 119213226.
- ^ Greenwood & Earnshaw 1997, p. 962.
- ^ Saha, Naresh (1992). "Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study". Journal of Applied Physics. 72 (7): 3072–3079. Bibcode:1992JAP....72.3072S. doi:10.1063/1.351465.
- ^ Schubert, E.F. "The hardness scale introduced by Friederich Mohs" (PDF). Archived (PDF) from the original on 3 June 2010.
- ^ Truini, Joseph (May 1988). "Drill Bits". Popular Mechanics. 165 (5): 91. ISSN 0032-4558.
- ^ Baliga, B. Jayant (2005). Silicon carbide power devices. World Scientific. p. 91. ISBN978-981-256-605-8.
- ^ "Titanium carbide product information". H. C. Starck. Archived from the original on 22 September 2017. Retrieved 16 November 2015.
- ^ Seong, S.; et al. (2009). Titanium: industrial base, price trends, and technology initiatives. Rand Corporation. p. 10. ISBN978-0-8330-4575-1.
- ^ Johnson, Richard W. (1998). The Handbook of Fluid Dynamics. Springer. pp. 38–21. ISBN978-3-540-64612-9.
- ^ Coates, Robert M.; Paquette, Leo A. (2000). Handbook of Reagents for Organic Synthesis. John Wiley and Sons. p. 93. ISBN978-0-470-85625-3.
- ^ Greenwood & Earnshaw 1997, p. 965
- ^ Hartwig, J. F. (2010) Organotransition Metal Chemistry, from Bonding to Catalysis. University Science Books: New York. ISBN 189138953X
- ^ a b c Tshuva, Edit Y.; Miller, Maya (2018). "Chapter 8. Coordination Complexes of Titanium(IV) for Anticancer Therapy". In Sigel, Astrid; Sigel, Helmut; Freisinger, Eva; Sigel, Roland K. O. (eds.). Metallo-Drugs: Development and Action of Anticancer Agents. Metal Ions in Life Sciences. 18. Berlin: de Gruyter GmbH. pp. 219–250. doi:10.1515/9783110470734-014. ISBN9783110470734. PMID 29394027.
- ^ a b c d e f g h Emsley 2001, p. 452
- ^ Gregor, William (1791) "Beobachtungen und Versuche über den Menakanit, einen in Cornwall gefundenen magnetischen Sand" (Observations and experiments regarding menaccanite [i.e., ilmenite], a magnetic sand found in Cornwall), Chemische Annalen …, 1, pp. 40–54, 103–119.
- ^ Gregor, William (1791) "Sur le menakanite, espèce de sable attirable par l'aimant, trouvé dans la province de Cornouilles" (On menaccanite, a species of magnetic sand, found in the county of Cornwall), Observations et Mémoires sur la Physique, 39: 72–78, 152–160.
- ^ Klaproth, Martin Heinrich (1795) "Chemische Untersuchung des sogenannten hungarischen rothen Schörls" (Chemical investigation of the so-called Hungarian red tourmaline [rutile]) in: Beiträge zur chemischen Kenntniss der Mineralkörper (Contributions to the chemical knowledge of mineral substances), vol. 1, (Berlin, (Germany): Heinrich August Rottmann, 233–244. From page 244: "Diesem zufolge will ich den Namen für die gegenwärtige metallische Substanz, gleichergestalt wie bei dem Uranium geschehen, aus der Mythologie, und zwar von den Ursöhnen der Erde, den Titanen, entlehnen, und benenne also diese neue Metallgeschlecht: Titanium; … " (By virtue of this I will derive the name for the present metallic substance — as happened similarly in the case of uranium — from mythology, namely from the first sons of the Earth, the Titans, and thus [I] name this new species of metal: "titanium"; … )
- ^ a b c Roza 2008, p. 9
- ^ a b Greenwood & Earnshaw 1997, p. 955
- ^ van Arkel, A. E.; de Boer, J. H. (1925). "Preparation of pure titanium, zirconium, hafnium, and thorium metal". Zeitschrift für anorganische und allgemeine Chemie. 148: 345–50. doi:10.1002/zaac.19251480133.
- ^ Yanko, Eugene; Omsk VTTV Arms Exhibition and Military Parade JSC (2006). "Submarines: general information". Retrieved 2 February 2015.
- ^ Stainless Steel World (July–August 2001). "VSMPO Stronger Than Ever" (PDF). KCI Publishing B.V. pp. 16–19. Archived from the original (PDF) on 5 October 2006. Retrieved 2 January 2007.
- ^ Defense National Stockpile Center (2008). Strategic and Critical Materials Report to the Congress. Operations under the Strategic and Critical Materials Stock Piling Act during the Period October 2007 through September 2008 (PDF). United States Department of Defense. p. 3304. Archived from the original (PDF) on 11 February 2010.
- ^ Bush, Jason (15 February 2006). "Boeing's Plan to Land Aeroflot". BusinessWeek. Archived from the original on 9 April 2009. Retrieved 29 December 2006. CS1 maint: unfit URL (link)
- ^ "Roskill Information Services: Global Supply of Titanium is Forecast to Increase", Titanium Metal: Market Outlook to 2015 (5th edition, 2010).
- ^ "ISRO's titanium sponge plant in Kerala fully commissioned". The Economic Times. 10 August 2015. Archived from the original on 18 August 2015. Retrieved 8 November 2015.
- ^ Donachie 1988, Ch. 4
- ^ Barksdale 1968, p. 733
- ^ Chen, George Zheng; Fray, Derek J.; Farthing, Tom W. (2000). "Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride". Nature. 407 (6802): 361–364. Bibcode:2000Natur.407..361C. doi:10.1038/35030069. PMID 11014188. S2CID 205008890.
- ^ Roza 2008, p. 23
- ^ "Titanium". Microsoft Encarta. 2005. Archived from the original on 27 October 2006. Retrieved 29 December 2006.
- ^ Donachie 1988, p. 16, Appendix J
- ^ ASTM International (2006). Annual Book of ASTM Standards (Volume 02.04: Non-ferrous Metals). West Conshohocken, PA: ASTM International. section 2. ISBN978-0-8031-4086-8. ASTM International (1998). Annual Book of ASTM Standards (Volume 13.01: Medical Devices; Emergency Medical Services). West Conshohocken, PA: ASTM International. sections 2 & 13. ISBN978-0-8031-2452-3.
- ^ Donachie 1988, pp. 13–16, Appendices H and J
- ^ Roza 2008, p. 25
- ^ "Titanium". The Essential Chemical Industry online. York, UK: CIEC Promoting Science at the University of York. 15 January 2015.
- ^ "Solderability". Retrieved 16 June 2011.
- ^ AWS G2.4/G2.4M:2007 Guide for the Fusion Welding of Titanium and Titanium Alloys. Miami: American Welding Society. 2006. Archived from the original on 10 December 2010. CS1 maint: bot: original URL status unknown (link)
- ^ Titanium Metals Corporation (1997). Titanium design and fabrication handbook for industrial applications. Dallas: Titanium Metals Corporation. Archived from the original on 9 February 2009. CS1 maint: bot: original URL status unknown (link)
- ^ Chen, George Z.; Fray, Derek J.; Farthing, Tom W. (2001). "Cathodic deoxygenation of the alpha case on titanium and alloys in molten calcium chloride". Metall. Mater. Trans. B. 32 (6): 1041. doi:10.1007/s11663-001-0093-8. S2CID 95616531.
- ^ Hampel, Clifford A. (1968). The Encyclopedia of the Chemical Elements. Van Nostrand Reinhold. p. 738. ISBN978-0-442-15598-8.
- ^ Smook, Gary A. (2002). Handbook for Pulp & Paper Technologists (3rd ed.). Angus Wilde Publications. p. 223. ISBN978-0-9694628-5-9.
- ^ "Cheap, Environmentally Friendly Extraction Method For Titanium Dioxide Developed". ScienceDaily . Retrieved 12 November 2021.
- ^ Moiseyev, Valentin N. (2006). Titanium Alloys: Russian Aircraft and Aerospace Applications. Taylor and Francis, LLC. p. 196. ISBN978-0-8493-3273-9.
- ^ a b Kramer, Andrew E. (5 July 2013). "Titanium Fills Vital Role for Boeing and Russia". The New York Times . Retrieved 6 July 2013.
- ^ a b Emsley 2001, p. 454
- ^ Donachie 1988, p. 13
- ^ Sevan, Vardan (23 September 2006). "Rosoboronexport controls titanium in Russia". Sevanco Strategic Consulting. Archived from the original on 11 November 2012. Retrieved 26 December 2006. CS1 maint: unfit URL (link)
- ^ "orenda | avro canada | 1957 | 1324 | Flight Archive".
- ^ "GlobalSecurity". GlobalSecurity.org. April 2006. Retrieved 23 April 2008.
- ^ Scharf, Caleb A. (June 17, 2016) The Jupiter Vault. Scientific American.
- ^ Donachie 1988, pp. 11–16
- ^ Kleefisch, E.W., ed. (1981). Industrial Application of Titanium and Zirconium. West Conshohocken, PA: ASTM International. ISBN978-0-8031-0745-8.
- ^ Bunshah, Rointan F., ed. (2001). "Ch. 8". Handbook of Hard Coatings. Norwich, NY: William Andrew Inc. ISBN978-0-8155-1438-1.
- ^ Bell, Tom; et al. (2001). Heat Treating. Proceedings of the 20th Conference, 9–12 October 2000. ASM International. p. 141. ISBN978-0-87170-727-7.
- ^ National Corvette Museum (2006). "Titanium Exhausts". Archived from the original on 3 January 2013. Retrieved 26 December 2006.
- ^ Compact Powerhouse: Inside Corvette Z06's LT4 Engine 650-hp supercharged 6.2L V-8 makes world-class power in more efficient package. media.gm.com. 20 August 2014
- ^ Davis, Joseph R. (1998). Metals Handbook . ASM International. p. 584. ISBN978-0-87170-654-6.
- ^ a b c Donachie 1988, pp. 11, 255
- ^ Mike Gruntman (2004). Blazing the Trail: The Early History of Spacecraft and Rocketry. Reston, VA: American Institute of Aeronautics and Astronautics. p. 457. ISBN978-1-56347-705-8.
- ^ Lütjering, Gerd; Williams, James Case (12 June 2007). "Appearance Related Applications". Titanium. ISBN978-3-540-71397-5.
- ^ "Denver Art Museum, Frederic C. Hamilton Building". SPG Media. 2006. Retrieved 26 December 2006.
- ^ "Apple PowerBook G4 400 (Original – Ti) Specs". everymac.com . Retrieved 8 August 2009.
- ^ Gafner, G. (1989). "The development of 990 Gold-Titanium: its Production, use and Properties" (PDF). Gold Bulletin. 22 (4): 112–122. doi:10.1007/BF03214709. S2CID 114336550. Archived from the original on 29 November 2010. CS1 maint: unfit URL (link)
- ^ "Fine Art and Functional Works in Titanium and Other Earth Elements". Archived from the original on 13 May 2008. Retrieved 8 August 2009. CS1 maint: bot: original URL status unknown (link)
- ^ Alwitt, Robert S. (2002). "Electrochemistry Encyclopedia". Archived from the original on 2 July 2008. Retrieved 30 December 2006. CS1 maint: unfit URL (link)
- ^ "Body Piercing Safety". doctorgoodskin.com . Retrieved 1 August 2009.
- ^ "World Firsts | British Pobjoy Mint". www.pobjoy.com . Retrieved 11 November 2017.
- ^ Turgeon, Luke (20 September 2007). "Titanium Titan: Broughton immortalised". The Gold Coast Bulletin. Archived from the original on 28 September 2013. CS1 maint: unfit URL (link)
- ^ "Orthopaedic Metal Alloys". Totaljoints.info. Retrieved 27 September 2010.
- ^ "Titanium foams replace injured bones". Research News. 1 September 2010. Retrieved 27 September 2010.
- ^ Lavine, Marc S., Make no bones about titanium, Science Magazine, 2018.01.08, Volume 359, Issue 6372, pp. 173-174 doi:10.1126/science.359.6372.173-f
- ^ Harun, W. S. W., et al. "A review of powdered additive manufacturing techniques for Ti-6al-4v biomedical applications." Powder Technology 331 (2018): 74-97.
- ^ Trevisan, Francesco, et al. "Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications." Journal of applied biomaterials & functional materials 16.2 (2018): 57-67
- ^ Pinsino, Annalisa; Russo, Roberta; Bonaventura, Rosa; Brunelli, Andrea; Marcomini, Antonio; Matranga, Valeria (28 September 2015). "Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway". Scientific Reports. 5: 14492. Bibcode:2015NatSR...514492P. doi:10.1038/srep14492. PMC4585977. PMID 26412401.
- ^ Shoesmith, D. W.; Noel, J. J.; Hardie, D.; Ikeda, B. M. (2000). "Hydrogen Absorption and the Lifetime Performance of Titanium Nuclear Waste Containers". Corrosion Reviews. 18 (4–5): 331–360. doi:10.1515/CORRREV.2000.18.4-5.331. S2CID 137825823.
- ^ Carter, L. J.; Pigford, T. J. (2005). "Proof of Safety at Yucca Mountain". Science. 310 (5747): 447–8. doi:10.1126/science.1112786. PMID 16239463. S2CID 128447596.
- ^ Berglund, Fredrik; Carlmark, Bjorn (October 2011). "Titanium, Sinusitis, and the Yellow Nail Syndrome". Biological Trace Element Research. 143 (1): 1–7. doi:10.1007/s12011-010-8828-5. PMC3176400. PMID 20809268.
- ^ Cotell, Catherine Mary; Sprague, J. A.; Smidt, F. A. (1994). ASM Handbook: Surface Engineering (10th ed.). ASM International. p. 836. ISBN978-0-87170-384-2.
- ^ Compressed Gas Association (1999). Handbook of compressed gases (4th ed.). Springer. p. 323. ISBN978-0-412-78230-5.
- ^ Solomon, Robert E. (2002). Fire and Life Safety Inspection Manual. National Fire Prevention Association (8th ed.). Jones & Bartlett Publishers. p. 45. ISBN978-0-87765-472-8.
Bibliography
- Barksdale, Jelks (1968). "Titanium". In Clifford A. Hampel (ed.). The Encyclopedia of the Chemical Elements. New York: Reinhold Book Corporation. pp. 732–738. LCCN 68029938.
- Donachie, Matthew J., Jr. (1988). TITANIUM: A Technical Guide. Metals Park, OH: ASM International. p. 11. ISBN978-0-87170-309-5.
- Emsley, John (2001). "Titanium". Nature's Building Blocks: An A-Z Guide to the Elements . Oxford, England, UK: Oxford University Press. ISBN978-0-19-850340-8.
- Flower, Harvey M. (2000). "Materials Science: A moving oxygen story". Nature. 407 (6802): 305–306. doi:10.1038/35030266. PMID 11014169.
- Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.). Oxford: Butterworth-Heinemann. ISBN978-0-7506-3365-9.
- Roza, Greg (2008). Titanium (First ed.). New York, NY: The Rosen Publishing Group. ISBN978-1-4042-1412-5.
External links
This audio file was created from a revision of this article dated 25 August 2005 (2005-08-25), and does not reflect subsequent edits.
- "Titanium: Our Next Major Metal", Popular Science, October 1950—one of first general public detailed articles on Titanium
- Titanium at The Periodic Table of Videos (University of Nottingham)
- Titanium at The Essential Chemical Industry – online (CIEC Promoting Science at the University of York)
- International Titanium Association Archived 4 November 2020 at the Wayback Machine
- Metallurgy of Titanium and its Alloys, Cambridge University
- World Production of Titanium Concentrates, by Country
- Metal of the gods
What Is the Atomic Number of Titanium
Source: https://en.wikipedia.org/wiki/Titanium
0 Response to "What Is the Atomic Number of Titanium"
Post a Comment